A Systems Approach Version 62dev Documentation
The promise of general-purpose packet-switched networks is that they support all kinds of applications and data, including multimedia applications that transmit digitized audio and video streams. In the early days, one obstacle to the fulfillment of this promise was the need for higher-bandwidth links. That is no longer an issue, but there is more to transmitting audio and video over a network than just providing sufficient bandwidth.
Participants in a telephone conversation, for example, expect to be able to converse in such a way that one person can respond to something said by the other and be heard almost immediately. Thus, the timeliness of delivery can be very important. We refer to applications that are sensitive to the timeliness of data as real-time applications. Voice and video applications tend to be the canonical examples, but there are others such as industrial control—you would like a command sent to a robot arm to reach it before the arm crashes into something. Even file transfer applications can have timeliness constraints, such as a requirement that a database update complete overnight before the business that needs the data resumes on the next day.
The distinguishing characteristic of real-time applications is that they need some sort of assurance from the network that data is likely to arrive on time (for some definition of “on time”). Whereas a non-real-time application can use an end-to-end retransmission strategy to make sure that data arrives correctly, such a strategy cannot provide timeliness: Retransmission only adds to total latency if data arrives late. Timely arrival must be provided by the network itself (the routers), not just at the network edges (the hosts). We therefore conclude that the best-effort model, in which the network tries to deliver your data but makes no promises and leaves the cleanup operation to the edges, is not sufficient for real-time applications. What we need is a new service model, in which applications that need higher assurances can ask the network for them. The network may then respond by providing an assurance that it will do better or perhaps by saying that it cannot promise anything better at the moment. Note that such a service model is a superset of the original model: Applications that are happy with best-effort service should be able to use the new service model; their requirements are just less stringent. This implies that the network will treat some packets differently from others—something that is not done in the best-effort model. A network that can provide these different levels of service is often said to support quality of service (QoS).
6.5.2 Integrated Services (RSVP)
The term Integrated Services (often called IntServ for short) refers to a body of work that was produced by the IETF around . The IntServ working group developed specifications of a number of service classes designed to meet the needs of some of the application types described above. It also defined how RSVP could be used to make reservations using these service classes. The following paragraphs provide an overview of these specifications and the mechanisms that are used to implement them.
Service Classes
One of the service classes is designed for intolerant applications. These applications require that a packet never arrive late. The network should guarantee that the maximum delay that any packet will experience has some specified value; the application can then set its playback point so that no packet will ever arrive after its playback time. We assume that early arrival of packets can always be handled by buffering. This service is referred to as the guaranteed service.
In addition to the guaranteed service, the IETF considered several other services, but eventually settled on one to meet the needs of tolerant, adaptive applications. The service is known as controlled load and was motivated by the observation that existing applications of this type run quite well on networks that are not heavily loaded. Audio applications, for example, adjust their playback point as network delay varies and produces reasonable audio quality as long as loss rates remain on the order of 10% or less.
The aim of the controlled load service is to emulate a lightly loaded network for those applications that request the service, even though the network as a whole may in fact be heavily loaded. The trick to this is to use a queuing mechanism such as WFQ to isolate the controlled load traffic from the other traffic and some form of admission control to limit the total amount of controlled load traffic on a link such that the load is kept reasonably low. We discuss admission control in more detail below.
Clearly, these two service classes are a subset of all the classes that might be provided. In fact, other services were specified but never standardized as part of the IETF’s work. So far, the two services described above (along with traditional best effort) have proven flexible enough to meet the needs of a wide range of applications.
Overview of Mechanisms
Now that we have augmented our best-effort service model with some new service classes, the next question is how we implement a network that provides these services to applications. This section outlines the key mechanisms. Keep in mind while reading this section that the mechanisms being described are still being hammered out by the Internet design community. The main thing to take away from the discussion is a general understanding of the pieces involved in supporting the service model outlined above.
First, whereas with a best-effort service we can just tell the network where we want our packets to go and leave it at that, a real-time service involves telling the network something more about the type of service we require. We may give it qualitative information such as “use a controlled load service” or quantitative information such as “I need a maximum delay of 100 ms.” In addition to describing what we want, we need to tell the network something about what we are going to inject into it, since a low-bandwidth application is going to require fewer network resources than a high-bandwidth application. The set of information that we provide to the network is referred to as aflowspec. This name comes from the idea that a set of packets associated with a single application and that share common requirements is called a flow, consistent with our use of the term in the earlier section outlining the relevant issues.
Second, when we ask the network to provide us with a particular service, the network needs to decide if it can in fact provide that service. For example, if 10 users ask for a service in which each will consistently use 2 Mbps of link capacity, and they all share a link with 10-Mbps capacity, the network will have to say no to some of them. The process of deciding when to say no is called admission control.
Third, we need a mechanism by which the users of the network and the components of the network itself exchange information such as requests for service, flowspecs, and admission control decisions. This is sometimes called signalling, but since that word has several meanings, we refer to this process as resource reservation, and it is achieved using a resource reservation protocol.
Finally, when flows and their requirements have been described, and admission control decisions have been made, the network switches and routers need to meet the requirements of the flows. A key part of meeting these requirements is managing the way packets are queued and scheduled for transmission in the switches and routers. This last mechanism is packet scheduling.
Flowspecs
There are two separable parts to the flowspec: the part that describes the flow’s traffic characteristics (called the TSpec) and the part that describes the service requested from the network (the RSpec). The RSpec is very service specific and relatively easy to describe. For example, with a controlled load service, the RSpec is trivial: The application just requests controlled load service with no additional parameters. With a guaranteed service, you could specify a delay target or bound. (In the IETF’s guaranteed service specification, you specify not a delay but another quantity from which delay can be calculated.)
The TSpec is a little more complicated. As our example above showed, we need to give the network enough information about the bandwidth used by the flow to allow intelligent admission control decisions to be made. For most applications, however, the bandwidth is not a single number; it is something that varies constantly. A video application, for example, will generally generate more bits per second when the scene is changing rapidly than when it is still. Just knowing the long-term average bandwidth is not enough, as the following example illustrates. Suppose that we have 10 flows that arrive at a switch on separate input ports and that all leave on the same 10-Mbps link. Assume that over some suitably long interval each flow can be expected to send no more than 1 Mbps. You might think that this presents no problem. However, if these are variable bit rate applications, such as compressed video, then they will occasionally send more than their average rates. If enough sources send at above their average rates, then the total rate at which data arrives at the switch will be greater than 10 Mbps. This excess data will be queued before it can be sent on the link. The longer this condition persists, the longer the queue will get. Packets might have to be dropped and, even if it doesn’t come to that, data sitting in the queue is being delayed. If packets are delayed long enough, the service that was requested will not be provided.
Exactly how we manage our queues to control delay and avoid dropping packets is something we discuss below. However, note here that we need to know something about how the bandwidth of our sources varies with time. One way to describe the bandwidth characteristics of sources is called a token bucket filter. Such a filter is described by two parameters: a token rate r, and a bucket depth B. It works as follows. To be able to send a byte, I must have a token. To send a packet of length n, I need n tokens. I start with no tokens and I accumulate them at a rate of rper second. I can accumulate no more than B tokens. What this means is that I can send a burst of as many as Bbytes into the network as fast as I want, but over a sufficiently long interval I can’t send more thanrbytes per second. It turns out that this information is very helpful to the admission control algorithm when it tries to figure out whether it can accommodate a new request for service.
Figure 176. Two flows with equal average rates but different token bucket descriptions.
Figure 176 illustrates how a token bucket can be used to characterize a flow’s bandwidth requirements. For simplicity, assume that each flow can send data as individual bytes rather than as packets. Flow A generates data at a steady rate of 1 MBps, so it can be described by a token bucket filter with a rate r = 1MBps and a bucket depth of 1 byte. This means that it receives tokens at a rate of 1 MBps but that it cannot store more than 1 token—it spends them immediately. Flow B also sends at a rate that averages out to 1 MBps over the long term, but does so by sending at 0.5 MBps for 2 seconds and then at 2 MBps for 1 second. Since the token bucket rate r is, in a sense, a long-term average rate, flow B can be described by a token bucket with a rate of 1 MBps. Unlike flow A, however, flow B needs a bucket depth B of at least 1 MB, so that it can store up tokens while it sends at less than 1 MBps to be used when it sends at 2 MBps. For the first 2 seconds in this example, it receives tokens at a rate of 1 MBps but spends them at only 0.5 MBps, so it can save up 2 × 0.5 = 1 MB of tokens, which it then spends in the third second (along with the new tokens that continue to accrue in that second) to send data at 2 MBps. At the end of the third second, having spent the excess tokens, it starts to save them up again by sending at 0.5 MBps again.
It is interesting to note that a single flow can be described by many different token buckets. As a trivial example, flow A could be described by the same token bucket as flow B, with a rate of 1 MBps and a bucket depth of 1 MB. The fact that it never actually needs to accumulate tokens does not make that an inaccurate description, but it does mean that we have failed to convey some useful information to the network—the fact that flow A is actually very consistent in its bandwidth needs. In general, it is good to be as explicit about the bandwidth needs of an application as possible to avoid over-allocation of resources in the network.
Admission Control
The idea behind admission control is simple: When some new flow wants to receive a particular level of service, admission control looks at the TSpec and RSpec of the flow and tries to decide if the desired service can be provided to that amount of traffic, given the currently available resources, without causing any previously admitted flow to receive worse service than it had requested. If it can provide the service, the flow is admitted; if not, then it is denied. The hard part is figuring out when to say yes and when to say no.
Admission control is very dependent on the type of requested service and on the queuing discipline employed in the routers; we discuss the latter topic later in this section. For a guaranteed service, you need to have a good algorithm to make a definitive yes/no decision. The decision is fairly straightforward if weighted fair queuing is used at each router. For a controlled load service, the decision may be based on heuristics, such as “The last time I allowed a flow with this TSpec into this class, the delays for the class exceeded the acceptable bound, so I’d better say no” or “My current delays are so far inside the bounds that I should be able to admit another flow without difficulty.”
Admission control should not be confused with policing. The former is a per-flow decision to admit a new flow or not. The latter is a function applied on a per-packet basis to make sure that a flow conforms to the TSpec that was used to make the reservation. If a flow does not conform to its TSpec—for example, because it is sending twice as many bytes per second as it said it would—then it is likely to interfere with the service provided to other flows, and some corrective action must be taken. There are several options, the obvious one being to drop offending packets. However, another option would be to check if the packets really are interfering with the service of other flows. If they are not interfering, the packets could be sent on after being marked with a tag that says, in effect, “This is a nonconforming packet. Drop it first if you need to drop any packets.”
Admission control is closely related to the important issue of policy. For example, a network administrator might wish to allow reservations made by his company’s CEO to be admitted while rejecting reservations made by more lowly employees. Of course, the CEO’s reservation request might still fail if the requested resources aren’t available, so we see that issues of policy and resource availability may both be addressed when admission control decisions are made. The application of policy to networking is an area receiving much attention at the time of writing.
Reservation Protocol
While connection-oriented networks have always needed some sort of setup protocol to establish the necessary virtual circuit state in the switches, connectionless networks like the Internet have had no such protocols. As this section has indicated, however, we need to provide a lot more information to our network when we want a real-time service from it. While there have been a number of setup protocols proposed for the Internet, the one on which most current attention is focused is the RSVP. It is particularly interesting because it differs so substantially from conventional signalling protocols for connection-oriented networks.
One of the key assumptions underlying RSVP is that it should not detract from the robustness that we find in today’s connectionless networks. Because connectionless networks rely on little or no state being stored in the network itself, it is possible for routers to crash and reboot and for links to go up and down while end-to-end connectivity is still maintained. RSVP tries to maintain this robustness by using the idea ofsoft state in the routers. Soft state—in contrast to the hard state found in connection-oriented networks—does not need to be explicitly deleted when it is no longer needed. Instead, it times out after some fairly short period (say, a minute) if it is not periodically refreshed. We will see later how this helps robustness.
Another important characteristic of RSVP is that it aims to support multicast flows just as effectively as unicast flows. This is not surprising, since many of the first applications that could benefit from improved quality of service were also multicast applications—video conferenceing tools, for example. One of the insights of RSVP’s designers is that most multicast applications have many more receivers than senders, as typified by the large audience and one speaker for a lecture. Also, receivers may have different requirements. For example, one receiver might want to receive data from only one sender, while others might wish to receive data from all senders. Rather than having the senders keep track of a potentially large number of receivers, it makes more sense to let the receivers keep track of their own needs. This suggests the receiver-orientedapproach adopted by RSVP. In contrast, connection-oriented networks usually leave resource reservation to the sender, just as it is normally the originator of a phone call who causes resources to be allocated in the phone network.
The soft state and receiver-oriented nature of RSVP give it a number of good properties. One such property is that it is very straightforward to increase or decrease the level of resource allocation provided to a receiver. Since each receiver periodically sends refresh messages to keep the soft state in place, it is easy to send a new reservation that asks for a new level of resources. Further, soft state deals gracefully with the possibility of network or node failures. In the event of a host crash, resources allocated by that host to a flow will naturally time out and be released. To see what happens in the event of a router or link failure, we need to look a little more closely at the mechanics of making a reservation.
Initially, consider the case of one sender and one receiver trying to get a reservation for traffic flowing between them. There are two things that need to happen before a receiver can make the reservation. First, the receiver needs to know what traffic the sender is likely to send so that it can make an appropriate reservation. That is, it needs to know the sender’s TSpec. Second, it needs to know what path the packets will follow from sender to receiver, so that it can establish a resource reservation at each router on the path. Both of these requirements can be met by sending a message from the sender to the receiver that contains the TSpec. Obviously, this gets the TSpec to the receiver. The other thing that happens is that each router looks at this message (called a PATH message) as it goes past, and it figures out the reverse path that will be used to send reservations from the receiver back to the sender in an effort to get the reservation to each router on the path. Building the multicast tree in the first place is done by mechanisms such as those described in another chapter.
Having received a PATH message, the receiver sends a reservation back up the multicast tree in a RESV message. This message contains the sender’s TSpec and an RSpec describing the requirements of this receiver. Each router on the path looks at the reservation request and tries to allocate the necessary resources to satisfy it. If the reservation can be made, the RESV request is passed on to the next router. If not, an error message is returned to the receiver who made the request. If all goes well, the correct reservation is installed at every router between the sender and the receiver. As long as the receiver wants to retain the reservation, it sends the same RESV message about once every 30 seconds.
Now we can see what happens when a router or link fails. Routing protocols will adapt to the failure and create a new path from sender to receiver. PATH messages are sent about every 30 seconds, and may be sent sooner if a router detects a change in its forwarding table, so the first one after the new route stabilizes will reach the receiver over the new path. The receiver’s next RESV message will follow the new path and, if all goes well, establish a new reservation on the new path. Meanwhile, the routers that are no longer on the path will stop getting RESV messages, and these reservations will time out and be released. Thus, RSVP deals quite well with changes in topology, as long as routing changes are not excessively frequent.
Figure 177. Making reservations on a multicast tree.
The next thing we need to consider is how to cope with multicast, where there may be multiple senders to a group and multiple receivers. This situation is illustrated in Figure 177. First, let’s deal with multiple receivers for a single sender. As a RESV message travels up the multicast tree, it is likely to hit a piece of the tree where some other receiver’s reservation has already been established. It may be the case that the resources reserved upstream of this point are adequate to serve both receivers. For example, if receiver A has already made a reservation that provides for a guaranteed delay of less than 100 ms, and the new request from receiver B is for a delay of less than 200 ms, then no new reservation is required. On the other hand, if the new request were for a delay of less than 50 ms, then the router would first need to see if it could accept the request; if so, it would send the request on upstream. The next time receiver A asked for a minimum of a 100-ms delay, the router would not need to pass this request on. In general, reservations can be merged in this way to meet the needs of all receivers downstream of the merge point.
If there are also multiple senders in the tree, receivers need to collect the TSpecs from all senders and make a reservation that is large enough to accommodate the traffic from all senders. However, this may not mean that the TSpecs need to be added up. For example, in an audioconference with 10 speakers, there is not much point in allocating enough resources to carry 10 audio streams, since the result of 10 people speaking at once would be incomprehensible. Thus, we could imagine a reservation that is large enough to accommodate two speakers and no more. Calculating the correct overall TSpec from all of the sender TSpecs is clearly application specific. Also, we may only be interested in hearing from a subset of all possible speakers; RSVP has different reservation styles to deal with such options as “Reserve resources for all speakers,” “Reserve resources for any \(n\) speakers,” and “Reserve resources for speakers A and B only.”
Packet Classifying and Scheduling
Once we have described our traffic and our desired network service and have installed a suitable reservation at all the routers on the path, the only thing that remains is for the routers to actually deliver the requested service to the data packets. There are two things that need to be done:
* Associate each packet with the appropriate reservation so that it can be handled correctly, a process known as classifying packets.
* Manage the packets in the queues so that they receive the service that has been requested, a process known as packet scheduling.
The first part is done by examining up to five fields in the packet: the source address, destination address, protocol number, source port, and destination port. (In IPv6, it is possible that the FlowLabel field in the header could be used to enable the lookup to be done based on a single, shorter key.) Based on this information, the packet can be placed in the appropriate class. For example, it may be classified into the controlled load classes, or it may be part of a guaranteed flow that needs to be handled separately from all other guaranteed flows. In short, there is a mapping from the flow-specific information in the packet header to a single class identifier that determines how the packet is handled in the queue. For guaranteed flows this might be a one-to-one mapping, while for other services it might be many to one. The details of classification are closely related to the details of queue management.
It should be clear that something as simple as a FIFO queue in a router will be inadequate to provide many different services and to provide different levels of delay within each service. Several more sophisticated queue management disciplines were discussed in an earlier section, and some combination of these is likely to be used in a router.
The details of packet scheduling ideally should not be specified in the service model. Instead, this is an area where implementors can try to do creative things to realize the service model efficiently. In the case of guaranteed service, it has been established that a weighted fair queuing discipline, in which each flow gets its own individual queue with a certain share of the link, will provide a guaranteed end-to-end delay bound that can readily be calculated. For controlled load, simpler schemes may be used. One possibility includes treating all the controlled load traffic as a single, aggregated flow (as far as the scheduling mechanism is concerned), with the weight for that flow being set based on the total amount of traffic admitted in the controlled load class. The problem is made harder when you consider that, in a single router, many different services are likely to be provided concurrently and that each of these services may require a different scheduling algorithm. Thus, some overall queue management algorithm is needed to manage the resources between the different services.
Scalability Issues
Although the Integrated Services architecture and RSVP represented a significant enhancement of the best-effort service model of IP, many Internet service providers felt that it was not the right model for them to deploy. The reason for this reticence relates to one of the fundamental design goals of IP: scalability. In the best-effort service model, routers in the Internet store little or no state about the individual flows passing through them. Thus, as the Internet grows, the only thing routers have to do to keep up with that growth is to move more bits per second and to deal with larger routing tables, but RSVP raises the possibility that every flow passing through a router might have a corresponding reservation. To understand the severity of this problem, suppose that every flow on an OC-48 (2.5-Gbps) link represents a 64-kbps audio stream. The number of such flows is
2.5 × 109 / 64 × 103 = 39,000
Each of those reservations needs some amount of state that needs to be stored in memory and refreshed periodically. The router needs to classify, police, and queue each of those flows. Admission control decisions need to be made every time such a flow requests a reservation, and some mechanism is needed to “push back” on users (e.g., charge their credit cards) so that they don’t make arbitrarily large reservations for long periods of time.
These scalability concerns have limited widespread deployment of IntServ. Because of these concerns, other approaches that do not require so much “per-flow” state have been developed. The next section discusses a number of such approaches.