Systemic Vaccination Induces CD8 T Cells And Remodels The Tumor Microenvironment

* Allen B.M.
* Hiam K.J.
* Burnett C.E.
* Venida A.
* DeBarge R.
* Tenvooren I.
* Marquez D.M.
* Cho N.W.
* Carmi Y.
* Spitzer M.H.

Systemic dysfunction and plasticity of the immune macroenvironment in cancer models.

Nat Med. 2020; 26: /10.1038/s View in Article * Google Scholar

* Aran D.
* Hu Z.
* Butte A.J.

xCell: digitally portraying the tissue cellular heterogeneity landscape.

Genome Biol. 2017; 18: 220/10.1186/s View in Article * Google Scholar

* Azizi E.
* Carr A.J.
* Plitas G.
* Cornish A.E.
* Konopacki C.
* Prabhakaran S.
* Nainys J.
* Wu K.
* Kiseliovas V.
* Setty M.
* et al.

Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment.

Cell. 2018; 174 (e1236): .e36/10.1016/j.cell.2018.05.060View in Article * Google Scholar

* Baharom F.
* Ramirez-Valdez R.A.
* Tobin K.K.S.
* Yamane H.
* Dutertre C.A.
* Khalilnezhad A.
* Reynoso G.V.
* Coble V.L.
* Lynn G.M.
* Mule M.P.
* et al.

Intravenous nanoparticle vaccination generates stem-like TCF1(+) neoantigen-specific CD8(+) T cells.

Nat. Immunol. 2021; 22: 41-52/10.1038/s View in Article * Google Scholar

* Binnewies M.
* Roberts E.W.
* Kersten K.
* Chan V.
* Fearon D.F.
* Merad M.
* Coussens L.M.
* Gabrilovich D.I.
* Ostrand-Rosenberg S.
* Hedrick C.C.
* et al.

Understanding the tumor immune microenvironment (TIME) for effective therapy.

Nat Med. 2018; 24: /10.1038/s xView in Article * Google Scholar

* Bleriot C.
* Chakarov S.
* Ginhoux F.

Determinants of Resident Tissue Macrophage Identity and Function.

Immunity. 2020; 52: /10.1016/j.immuni.2020.05.014View in Article * Google Scholar

* Bonnot T.
* Gillard M.B.
* Nagel D.H.
* et al.

A Simple Protocol for Informative Visualization of Enriched Gene Ontology Terms.

Bio-Protocol. 2019; 9/10.21769/BioProtoc.3429View in Article * Google Scholar

* Borden E.C.

Interferons alpha and beta in cancer: therapeutic opportunities from new insights.

Nat. Rev. Drug Discov. 2019; 18: /10.1038/s View in Article * Google Scholar

* Browaeys R.
* Saelens W.
* Saeys Y.

NicheNet: modeling intercellular communication by linking ligands to target genes.

Nat. Methods. 2020; 17: /10.1038/s View in Article * Google Scholar

* Bunis D.G.
* Andrews J.
* Fragiadakis G.K.
* Burt T.D.
* Sirota M.

dittoSeq: Universal User-Friendly Single-Cell and Bulk RNA Sequencing Visualization Toolkit.

Bioinformatics. 2020; 36: /10.1093/bioinformatics/btaa1011View in Article * Google Scholar

* Castoldi A.
* Monteiro L.B.
* van Teijlingen Bakker N.
* Sanin D.E.
* Rana N.
* Corrado M.
* Cameron A.M.
* Hassler F.
* Matsushita M.
* Caputa G.
* et al.

Triacylglycerol synthesis enhances macrophage inflammatory function.

Nat. Commun. 2020; 11: 4107/10.1038/s View in Article * Google Scholar

* Chaib M.
* Chauhan S.C.
* Makowski L.

Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer.

Front. Cell Dev. Biol. 2020; 8: 351/10.3389/fcell.2020.00351View in Article * Google Scholar

* Cheng S.
* Li Z.
* Gao R.
* Xing B.
* Gao Y.
* Yang Y.
* Qin S.
* Zhang L.
* Ouyang H.
* Du P.
* et al.

A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells.

Cell. 2021; 184: .e23/10.1016/j.cell.2021.01.010View in Article * Google Scholar

* Cillo A.R.
* Kürten C.H.
* Tabib T.
* Qi Z.
* Onkar S.
* Wang T.
* Liu A.
* Duvvuri U.
* Kim S.
* Soose R.J.
* et al.

Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer.

Immunity. 2020; 52: .e9/10.1016/j.immuni.2019.11.014View in Article * Google Scholar

* Combes A.J.
* Samad B.
* Tsui J.
* Chew N.W.
* Yan P.
* Reeder G.C.
* Kushnoor D.
* Shen A.
* Davidson B.
* Barczak A.J.
* et al.

Discovering dominant tumor immune archetypes in a pan-cancer census.

Cell. 2022; 185: .e19/10.1016/j.cell.2021.12.004View in Article * Google Scholar

* Dunn G.P.
* Koebel C.M.
* Schreiber R.D.

Interferons, immunity and cancer immunoediting.

Nat. Rev. Immunol. 2006; 6: /10.1038/nri1961View in Article * Google Scholar

* Duong E.
* Fessenden T.B.
* Lutz E.
* Dinter T.
* Yim L.
* Blatt S.
* Bhutkar A.
* Wittrup K.D.
* Spranger S.

Type I interferon activates MHC class I-dressed CD11b(+) conventional dendritic cells to promote protective anti-tumor CD8(+) T cell immunity.

Immunity. 2022; 55: .e9/10.1016/j.immuni.2021.10.020View in Article * Google Scholar

* Durinck S.
* Spellman P.T.
* Birney E.
* Huber W.

Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt.

Nat. Protoc. 2009; 4: /10.1038/nprot.2009.97View in Article * Google Scholar

* Fuertes M.B.
* Kacha A.K.
* Kline J.
* Woo S.R.
* Kranz D.M.
* Murphy K.M.
* Gajewski T.F.

Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells.

J. Exp. Med. 2011; 208: /10.1084/jem. View in Article * Google Scholar

* Gubin M.M.
* Esaulova E.
* Ward J.P.
* Malkova O.N.
* Runci D.
* Wong P.
* Noguchi T.
* Arthur C.D.
* Meng W.
* Alspach E.
* et al.

High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy.

Cell. 2018; 175: 1443/10.1016/j.cell.2018.11.003View in Article * Google Scholar

* Guilliams M.
* Ginhoux F.
* Jakubzick C.
* Naik S.H.
* Onai N.
* Schraml B.U.
* Segura E.
* Tussiwand R.
* Yona S.

Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny.

Nat. Rev. Immunol. 2014; 14: /10.1038/nri3712View in Article * Google Scholar

* Hao Y.
* Hao S.
* Andersen-Nissen E.
* Mauck 3rd, W.M.
* Zheng S.
* Butler A.
* Lee M.J.
* Wilk A.J.
* Darby C.
* Zager M.
* et al.

Integrated analysis of multimodal single-cell data.

Cell. 2021; 184: .e29/10.1016/j.cell.2021.04.048View in Article * Google Scholar

* Hegde P.S.
* Chen D.S.

Top 10 Challenges in Cancer Immunotherapy.

Immunity. 2020; 52: 17-35/10.1016/j.immuni.2019.12.011View in Article * Google Scholar

* Hegde S.
* Leader A.M.
* Merad M.

MDSC: Markers, development, states, and unaddressed complexity.

Immunity. 2021; 54: /10.1016/j.immuni.2021.04.004View in Article * Google Scholar

* Hourani T.
* Holden J.A.
* Li W.
* Lenzo J.C.
* Hadjigol S.
* O’Brien-Simpson N.M.

Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting.

Front. Oncol. 2021; /10.3389/fonc.2021.788365View in Article * Google Scholar

* Im S.J.
* Hashimoto M.
* Gerner M.Y.
* Lee J.
* Kissick H.T.
* Burger M.C.
* Shan Q.
* Hale J.S.
* Lee J.
* Nasti T.H.
* et al.

Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy.

Nature. 2016; 537: /10.1038/nature19330View in Article * Google Scholar

* Jaitin D.A.
* Adlung L.
* Thaiss C.A.
* Weiner A.
* Li B.
* Descamps H.
* Lundgren P.
* Bleriot C.
* Liu Z.
* Deczkowska A.
* et al.

Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner.

Cell. 2019; 178: .e14/10.1016/j.cell.2019.05.054View in Article * Google Scholar

* Katzenelenbogen Y.
* Sheban F.
* Yalin A.
* Yofe I.
* Svetlichnyy D.
* Jaitin D.A.
* Bornstein C.
* Moshe A.
* Keren-Shaul H.
* Cohen M.
* et al.

Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer.

Cell. 2020; 182: .e19/10.1016/j.cell.2020.06.032View in Article * Google Scholar

* Kim N.
* Kim H.K.
* Lee K.
* Hong Y.
* Cho J.H.
* Choi J.W.
* Lee J.I.
* Suh Y.L.
* Ku B.M.
* Eum H.H.
* et al.

Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma.

Nat. Commun. 2020; 11: 2285/10.1038/s View in Article * Google Scholar

* Kranz L.M.
* Diken M.
* Haas H.
* Kreiter S.
* Loquai C.
* Reuter K.C.
* Meng M.
* Fritz D.
* Vascotto F.
* Hefesha H.
* et al.

Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy.

Nature. 2016; 534: /10.1038/nature18300View in Article * Google Scholar

* Lam K.C.
* Araya R.E.
* Huang A.
* Chen Q.
* Di Modica M.
* Rodrigues R.R.
* Lopes A.
* Johnson S.B.
* Schwarz B.
* Bohrnsen E.
* et al.

Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment.

Cell. 2021; 184: .e21/10.1016/j.cell.2021.09.019View in Article * Google Scholar

* Lambrechts D.
* Wauters E.
* Boeckx B.
* Aibar S.
* Nittner D.
* Burton O.
* Bassez A.
* Decaluwe H.
* Pircher A.
* Van den Eynde K.
* et al.

Phenotype molding of stromal cells in the lung tumor microenvironment.

Nat Med. 2018; 24: /10.1038/s View in Article * Google Scholar

* Le Bon A.
* Etchart N.
* Rossmann C.
* Ashton M.
* Hou S.
* Gewert D.
* Borrow P.
* Tough D.F.

Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon.

Nat. Immunol. 2003; 4: /10.1038/ni978View in Article * Google Scholar

* Lee H.O.
* Hong Y.
* Etlioglu H.E.
* Cho Y.B.
* Pomella V.
* Van den Bosch B.
* Vanhecke J.
* Verbandt S.
* Hong H.
* Min J.W.
* et al.

Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer.

Nat. Genet. 2020; 52: /10.1038/s zView in Article * Google Scholar

* Lynn G.M.
* Sedlik C.
* Baharom F.
* Zhu Y.
* Ramirez-Valdez R.A.
* Coble V.L.
* Tobin K.
* Nichols S.R.
* Itzkowitz Y.
* Zaidi N.
* et al.

Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens.

Nat. Biotechnol. 2020; 38: /10.1038/s xView in Article * Google Scholar

* MacKenzie K.F.
* Clark K.
* Naqvi S.
* McGuire V.A.
* Noehren G.
* Kristariyanto Y.
* van den Bosch M.
* Mudaliar M.
* McCarthy P.C.
* Pattison M.J.
* et al.

PGE(2) induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway.

J. Immunol. 2013; 190: /10.4049/jimmunol. View in Article * Google Scholar

* Maier B.
* Leader A.M.
* Chen S.T.
* Tung N.
* Chang C.
* LeBerichel J.
* Chudnovskiy A.
* Maskey S.
* Walker L.
* Finnigan J.P.
* et al.

A conserved dendritic-cell regulatory program limits antitumour immunity.

Nature. 2020; 580: /10.1038/s yView in Article * Google Scholar

* Mariathasan S.
* Turley S.J.
* Nickles D.
* Castiglioni A.
* Yuen K.
* Wang Y.
* Kadel III E.E.
* Koeppen H.
* Astarita J.L.
* Cubas R.
* et al.

TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.

Nature. 2018; 554: /10.1038/nature25501View in Article * Google Scholar

* McGinnis C.S.
* Murrow L.M.
* Gartner Z.J.

DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors.

Cell Syst. 2019; 8: .e4/10.1016/j.cels.2019.03.003View in Article * Google Scholar

* McNab F.
* Mayer-Barber K.
* Sher A.
* Wack A.
* O’Garra A.

Type I interferons in infectious disease.

Nat. Rev. Immunol. 2015; 15: /10.1038/nri3787View in Article * Google Scholar

* Melero I.
* Gaudernack G.
* Gerritsen W.
* Huber C.
* Parmiani G.
* Scholl S.
* Thatcher N.
* Wagstaff J.
* Zielinski C.
* Faulkner I.
* Mellstedt H.

Therapeutic vaccines for cancer: an overview of clinical trials.

Nat. Rev. Clin. Oncol. 2014; 11: /10.1038/nrclinonc.2014.111View in Article * Google Scholar

* Meredith M.M.
* Liu K.
* Darrasse-Jeze G.
* Kamphorst A.O.
* Schreiber H.A.
* Guermonprez P.
* Idoyaga J.
* Cheong C.
* Yao K.H.
* Niec R.E.
* Nussenzweig M.C.

Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage.

J. Exp. Med. 2012; 209: /10.1084/jem. View in Article * Google Scholar

* Molgora M.
* Esaulova E.
* Vermi W.
* Hou J.
* Chen Y.
* Luo J.
* Brioschi S.
* Bugatti M.
* Omodei A.S.
* Ricci B.
* et al.

TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy.

Cell. 2020; 182 (e817): .e17/10.1016/j.cell.2020.07.013View in Article * Google Scholar

* Mosely S.I.
* Prime J.E.
* Sainson R.C.
* Koopmann J.O.
* Wang D.Y.
* Greenawalt D.M.
* Ahdesmaki M.J.
* Leyland R.
* Mullins S.
* Pacelli L.
* et al.

Rational Selection of Syngeneic Preclinical Tumor Models for Immunotherapeutic Drug Discovery.

Cancer Immunol Res. 2017; 5: 29-41/10.1158/ .cir View in Article * Google Scholar

* Mulder K.
* Patel A.A.
* Kong W.T.
* Piot C.
* Halitzki E.
* Dunsmore G.
* Khalilnezhad S.
* Irac S.E.
* Dubuisson A.
* Chevrier M.
* et al.

Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease.

Immunity. 2021; 54 (e1885): .e5/10.1016/j.immuni.2021.07.007View in Article * Google Scholar

* Peng J.
* Sun B.F.
* Chen C.Y.
* Zhou J.Y.
* Chen Y.S.
* Chen H.
* Liu L.
* Huang D.
* Jiang J.
* Cui G.S.
* et al.

Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma.

Cell Res. 2019; 29: /10.1038/s yView in Article * Google Scholar

* Romero P.
* Banchereau J.
* Bhardwaj N.
* Cockett M.
* Disis M.L.
* Dranoff G.
* Gilboa E.
* Hammond S.A.
* Hershberg R.
* Korman A.J.
* et al.

The Human Vaccines Project: A roadmap for cancer vaccine development.

Sci. Transl. Med. 2016; 8: 334ps9/10.1126/scitranslmed.aaf0685View in Article * Google Scholar

* Rosas-Ballina M.
* Guan X.L.
* Schmidt A.
* Bumann D.

Classical Activation of Macrophages Leads to Lipid Droplet Formation Without de novo Fatty Acid Synthesis.

Front. Immunol. 2020; 11: 131/10.3389/fimmu.2020.00131View in Article * Google Scholar

* Saxena M.
* van der Burg S.H.
* Melief C.J.M.
* Bhardwaj N.

Therapeutic cancer vaccines.

Nat. Rev. Cancer. 2021; 21: /10.1038/s View in Article * Google Scholar

* Sharma A.
* Seow J.J.W.
* Dutertre C.A.
* Pai R.
* Bleriot C.
* Mishra A.
* Wong R.M.M.
* Singh G.S.N.
* Sudhagar S.
* Khalilnezhad S.
* et al.

Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma.

Cell. 2020; 183: .e21/10.1016/j.cell.2020.08.040View in Article * Google Scholar

* Shibuya T.
* Kamiyama A.
* Sawada H.
* Kikuchi K.
* Maruyama M.
* Sawado R.
* Ikeda N.
* Asano K.
* Kurotaki D.
* Tamura T.
* et al.

Immunoregulatory Monocyte Subset Promotes Metastasis Associated With Therapeutic Intervention for Primary Tumor.

Front. Immunol. 2021; /10.3389/fimmu.2021.663115View in Article * Google Scholar

* Sleijfer S.
* Bannink M.
* Gool A.R.
* Kruit W.H.J.
* Stoter G.

Side effects of interferon-alpha therapy.

Pharm. World Sci. 2005; 27: /10.1007/s View in Article * Google Scholar

* Spitzer M.H.
* Carmi Y.
* Reticker-Flynn N.E.
* Kwek S.S.
* Madhireddy D.
* Martins M.M.
* Gherardini P.F.
* Prestwood T.R.
* Chabon J.
* Bendall S.C.
* et al.

Systemic Immunity Is Required for Effective Cancer Immunotherapy.

Cell. 2017; 168: .e15/10.1016/j.cell.2016.12.022View in Article * Google Scholar

* Sultan H.
* Salazar A.M.
* Celis E.

Poly-ICLC, a multi-functional immune modulator for treating cancer.

Semin. Immunol. 2020; /10.1016/j.smim.2020.101414View in Article * Google Scholar

* Thoreau M.
* Penny H.L.
* Tan K.
* Regnier F.
* Weiss J.M.
* Lee B.
* Johannes L.
* Dransart E.
* Le Bon A.
* Abastado J.P.
* et al.

Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site.

Oncotarget. 2015; 6: /10.18632/oncotarget.4940View in Article * Google Scholar

* Thorsson V.
* Gibbs D.L.
* Brown S.D.
* Wolf D.
* Bortone D.S.
* Ou Yang T.H.
* Porta-Pardo E.
* Gao G.F.
* Plaisier C.L.
* Eddy J.A.
* et al.

The Immune Landscape of Cancer.

Immunity. 2018; 48: .e14/10.1016/j.immuni.2018.03.023View in Article * Google Scholar

* U’Ren L.
* Guth A.
* Kamstock D.
* Dow S.

Type I interferons inhibit the generation of tumor-associated macrophages.

Cancer Immunol. Immunother. 2010; 59: /10.1007/s View in Article * Google Scholar

* van der Sluis T.C.
* Sluijter M.
* van Duikeren S.
* West B.L.
* Melief C.J.
* Arens R.
* van der Burg S.H.
* van Hall T.

Therapeutic Peptide Vaccine-Induced CD8 T Cells Strongly Modulate Intratumoral Macrophages Required for Tumor Regression.

Cancer Immunol Res. 2015; 3: /10.1158/ .cir View in Article * Google Scholar

* Veglia F.
* Sanseviero E.
* Gabrilovich D.I.

Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity.

Nat. Rev. Immunol. 2021; 21: /10.1038/s yView in Article * Google Scholar

* Waldman A.D.
* Fritz J.M.
* Lenardo M.J.

A guide to cancer immunotherapy: from T cell basic science to clinical practice.

Nat. Rev. Immunol. 2020; 20: /10.1038/s View in Article * Google Scholar

* Wu S.Z.
* Al-Eryani G.
* Roden D.L.
* Junankar S.
* Harvey K.
* Andersson A.
* Thennavan A.
* Wang C.
* Torpy J.R.
* Bartonicek N.
* et al.

A single-cell and spatially resolved atlas of human breast cancers.

Nat. Genet. 2021; 53: /10.1038/s View in Article * Google Scholar

* Yang H.
* Wang H.
* Levine Y.A.
* Gunasekaran M.K.
* Wang Y.
* Addorisio M.
* Zhu S.
* Li W.
* Li J.
* de Kleijn D.P.
* et al.

Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes.

JCI Insight. 2018; 3: /10.1172/jci.insight.126616View in Article * Google Scholar

* Yang Y.
* Guo J.
* Huang L.

Tackling TAMs for Cancer Immunotherapy: It’s Nano Time.

Trends Pharmacol. Sci. 2020; 41: /10.1016/j.tips.2020.08.003View in Article * Google Scholar

* Zhang L.
* Li Z.
* Skrzypczynska K.M.
* Fang Q.
* Zhang W.
* O’Brien S.A.
* He Y.
* Wang L.
* Zhang Q.
* Kim A.
* et al.

Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer.

Cell. 2020; 181: .e29/10.1016/j.cell.2020.03.048View in Article * Google Scholar

* Zhang X.
* Liu S.
* Guo C.
* Zong J.
* Sun M.Z.

The association of annexin A2 and cancers.

Clin. Transl. Oncol. 2012; 14: /10.1007/s View in Article * Google Scholar

* Zhang X.
* Ren D.
* Guo L.
* Wang L.
* Wu S.
* Lin C.
* Ye L.
* Zhu J.
* Li J.
* Song L.
* et al.

Thymosin beta 10 is a key regulator of tumorigenesis and metastasis and a novel serum marker in breast cancer.

Breast Cancer Res. 2017; 19: 15/10.1186/s View in Article * Google Scholar

* Zheng C.
* Zheng L.
* Yoo J.K.
* Guo H.
* Zhang Y.
* Guo X.
* Kang B.
* Hu R.
* Huang J.Y.
* Zhang Q.
* et al.

Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing.

Cell. 2017; 169: .e16/10.1016/j.cell.2017.05.035View in Article * Google Scholar

* Zhou Y.
* Zhou B.
* Pache L.
* Chang M.
* Khodabakhshi A.H.
* Tanaseichuk O.
* Benner C.
* Chanda S.K.

Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.

Nat. Commun. 2019; 10: 1523/10.1038/s View in Article * Google Scholar

* Zilionis R.
* Engblom C.
* Pfirschke C.
* Savova V.
* Zemmour D.
* Saatcioglu H.D.
* Krishnan I.
* Maroni G.
* Meyerovitz C.V.
* Kerwin C.M.
* et al.

Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species.

Immunity. 2019; 50: .e10/10.1016/j.immuni.2019.03.009View in Article * Google Scholar

* Zitvogel L.
* Galluzzi L.
* Kepp O.
* Smyth M.J.
* Kroemer G.

Type I interferons in anticancer immunity.

Nat. Rev. Immunol. 2015; 15: /10.1038/nri3845View in Article * Google Scholar