A Membranebased Seawater Electrolyser For Hydrogen Generation
Abstract
Electrochemical saline water electrolysis using renewable energy as input is a highly desirable and sustainable method for the mass production of green hydrogen1,2,3,4,5,6,7; however, its practical viability is seriously challenged by insufficient durability because of the electrode side reactions and corrosion issues arising from the complex components of seawater. Although catalyst engineering using polyanion coatings to suppress corrosion by chloride ions or creating highly selective electrocatalysts has been extensively exploited with modest success, it is still far from satisfactory for practical applications8,9,10,11,12,13,14. Indirect seawater splitting by using a pre-desalination process can avoid side-reaction and corrosion problems15,16,17,18,19,20,21, but it requires additional energy input, making it economically less attractive. In addition, the independent bulky desalination system makes seawater electrolysis systems less flexible in terms of size. Here we propose a direct seawater electrolysis method for hydrogen production that radically addresses the side-reaction and corrosion problems. A demonstration system was stably operated at a current density of 250 milliamperes per square centimetre for over 3,200 hours under practical application conditions without failure. This strategy realizes efficient, size-flexible and scalable direct seawater electrolysis in a way similar to freshwater splitting without a notable increase in operation cost, and has high potential for practical application. Importantly, this configuration and mechanism promises further applications in simultaneous water-based effluent treatment and resource recovery and hydrogen generation in one step.
This is a preview of subscription content, access via your institution
Access options
Subscribe to Journal
Get full journal access for 1 year
185,98 €
only 3,65 € per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
Fig. 1: Design of the SES.Fig. 2: Origin of continuous and highly efficient electrolysis.Fig. 3: Scale-up and generality. Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
References
1. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021). Article CAS PubMed Google Scholar
2. Dresp, S., Dionigi, F., Klingenhof, M. & Strasser, P. Direct electrolytic splitting of seawater-opportunities and challenges. ACS Energy Lett. 4, 933–942 (2019). Article CAS Google Scholar
3. Jin, H., Wang, X., Tang, C., Vasileff, A. & Qiao, S. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 33, (2021). Article CAS Google Scholar
4. Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012). Article CAS PubMed Google Scholar
5. Shi, L. et al. Using reverse osmosis membranes to control ion transport during water electrolysis. Energy Environ. Sci. 13, 3138–3148 (2020). Article CAS Google Scholar
6. Veroneau, S. S. & Nocera, D. G. Continuous electrochemical water splitting from natural water sources via forward osmosis. Proc. Natl Acad. Sci. USA 118, e (2021). Article CAS PubMed PubMed Central Google Scholar
7. Veroneau, S. S., Hartnett, A. C., Thorarinsdottir, A. E. & Nocera, D. G. Direct seawater splitting by forward osmosis coupled to water electrolysis. ACS Appl. Energy Mater. 5, 1403–1408 (2022). Article CAS Google Scholar
8. Kuang, Y. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl Acad. Sci. USA 116, (2019). Article Google Scholar
9. Sun, F., Qin, J. & Wang, Z. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 12, 4182 (2021). Article CAS PubMed PubMed Central Google Scholar . Dresp, S., Thanh, T. N., Klingenhof, M., Brueckner, S. & Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 13, 1725–1729 (2020). Article CAS Google Scholar . Yu, L., Zhu, Q., Song, S., Mcelhenny, B. & Ren, Z. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019). Article PubMed PubMed Central Google Scholar . Miao, J., Xiao, F. X., Yang, H. B., Khoo, S. Y. & Liu, B. Hierarchical Ni–Mo–S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 1, (2015). Article Google Scholar . Dinh, C. T. et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 4, 107–114 (2019). Article CAS Google Scholar . Tong, W. et al. Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020). Article Google Scholar . Loutatidou, et al. Capital cost estimation of RO plants: GCC countries versus southern Europe. Desalination 347, 103–111 (2014). Article CAS Google Scholar . Caldera, U. & Breyer, C. Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present and future. Water Resour. Res. 53, 10523–10538 (2017). Article Google Scholar . Choudhury, M. R., Anwar, N., Jassby, D. & Rahaman, M. S. Fouling and wetting in the membrane distillation driven wastewater reclamation process—a review. Adv. Colloid Interface Sci. 269, 370–399 (2019). Article CAS PubMed Google Scholar . Ahmad, N. A., Goh, P. S., Yogarathinam, L. T., Zulhairun, A. K. & Ismail, A. F. Current advances in membrane technologies for produced water desalination. Desalination 493, (2020). Article CAS Google Scholar . Generous, M. M., Qasem, N., Akbar, U. A. & Zubair, S. M. Techno-economic assessment of electrodialysis and reverse osmosis desalination plants. Sep. Purif. Technol. 272, (2021). Article CAS Google Scholar . Wang, M. et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 5, 518–526 (2022).
21. Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V. & Kang, S.-M. The state of desalination and brine production: a global outlook. Sci. Total. Environ. 657, 1343–1356 (2019). Article CAS PubMed Google Scholar . Ursua, A., Gandia, L. M. & Sanchis, P. Hydrogen production from water electrolysis: current status and future trends. Proc. IEEE 100, 410–426 (2012). Article CAS Google Scholar . Yin, Y., Jeong, N. & Tong, T. The effects of membrane surface wettability on pore wetting and scaling reversibility associated with mineral scaling in membrane distillation. J. Membr. Sci. 614, (2020). Article CAS Google Scholar . Qiu, H. et al. Functional polymer materials for modern marine biofouling control. Prog. Polym. Sci. 127, (2022). Article CAS Google Scholar . Yang, K. et al. A roadmap to sorption-based atmospheric water harvesting: from molecular sorption mechanism to sorbent design and system optimization. Environ. Sci. Technol. 55, 6542–6560 (2021). Article CAS PubMed Google Scholar . Tereshchenko, & Anatoly, G. Deliquescence: hygroscopicity of water‐soluble crystalline solids. J. Pharm. Sci. 104, 3639–3652 (2015). Article CAS PubMed Google Scholar . Lan, C., Xie, H., Wu, Y., Chen, B. & Liu, T. Nanoengineered, Mo-doped, Ni3S2 electrocatalyst with increased Ni–S coordination for oxygen evolution in alkaline seawater. Energy Fuels 36, 2910–2917 (2022). Article CAS Google Scholar . Hausmann, J. N., Schlögl, R., Menezes, P. & Driess, M. Is direct seawater splitting economically meaningful? Energy Environ. Sci. 14, 3679–3685 (2021). Article CAS Google Scholar . Qtaishat, M., Matsuura, T., Kruczek, B. & Khayet, M. Heat and mass transfer analysis in direct contact membrane distillation. Desalination 219, 272–292 (2008). Article CAS Google Scholar . Matsuura, T. Synthetic Membranes and Membrane Separation Processes (CRC, 2020).
31. Iversen, S. B., Bhatia, V. K., Dam-Johansen, K. & Jonsson, G. Characterization of microporous membranes for use in membrane contactors. J. Membr. Sci. 130, 205–217 (1997). Article CAS Google Scholar . Khalifa, A., Ahmad, H., Antar, M., Laoui, T. & Khayet, M. Experimental and theoretical investigations on water desalination using direct contact membrane distillation. Desalination 404, 22–34 (2017). Article CAS Google Scholar . Phattaranawik, J., Jiraratananon, R. & Fane, A. G. Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation. J. Membr. Sci. 215, 75–85 (2003). Article CAS Google Scholar . Khayet, M., Velázquez, A. & Mengual, J. I. Modelling mass transport through a porous partition: effect of pore size distribution. J. Non Equilibrium Thermodyn. 29, 279–299 (2004). Article CAS MATH Google Scholar . Lawson, K. W. & Lloyd, D. R. Membrane distillation. J. Membr. Sci. 124, 1–25 (1997). Article CAS Google Scholar . Balej, J. Water vapour partial pressures and water activities in potassium and sodium hydroxide solutions over wide concentration and temperature ranges. Int. J. Hydrogen Energy 10, 233–243 (1985). Article CAS Google Scholar . Chu, P. C., Fan, C. & Liu, W. T. Determination of vertical thermal structure from sea surface temperature. J. Atmos. Ocean. Technol. 17, 971–979 (2000). Article Google Scholar . Levitus, S. & Boyer, T. P. World Ocean Atlas 1994. Volume 4. Temperature (National Environmental Satellite, Data, and Information Service, 1994).
39. Straub, A. P., Yip, N. Y., Lin, S., Lee, J. & Elimelech, M. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes. Nat. Energy 1, (2016). Article CAS Google Scholar
Download references
Acknowledgements
This work is supported by the National Natural Science Foundation of China (grant numbers , and ) and the Science and Technology Department of Sichuan Province (grant number 2020YFH0012). We thank the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (grant number 2019ZT08G315), and we thank the Institute of New Energy and Low-Carbon Technology, Sichuan University for support.
Author information
Authors and Affiliations
1. Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China Heping Xie
2. Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, China Heping Xie, Zhiyu Zhao, Tao Liu, Yifan Wu, Cheng Lan & Wenchuan Jiang
3. Petroleum Engineering School, Southwest Petroleum University, Chengdu, China Liangyu Zhu
4. School of Chemical Engineering, Sichuan University, Chengdu, China Yunpeng Wang
5. College of Polymer Science and Engineering, Sichuan University, Chengdu, China Dongsheng Yang
6. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China Zongping Shao
7. WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia, Australia Zongping Shao
Authors 1. Heping XieYou can also search for this author in PubMedGoogle Scholar
2. Zhiyu ZhaoYou can also search for this author in PubMedGoogle Scholar
3. Tao LiuYou can also search for this author in PubMedGoogle Scholar
4. Yifan WuYou can also search for this author in PubMedGoogle Scholar
5. Cheng LanYou can also search for this author in PubMedGoogle Scholar
6. Wenchuan JiangYou can also search for this author in PubMedGoogle Scholar
7. Liangyu ZhuYou can also search for this author in PubMedGoogle Scholar
8. Yunpeng WangYou can also search for this author in PubMedGoogle Scholar
9. Dongsheng YangYou can also search for this author in PubMedGoogle Scholar
10. Zongping ShaoYou can also search for this author in PubMedGoogle Scholar
Contributions
H.X., T.L. and Z.S. conceived and designed the project. Z.Z., Y.W. and C.L. performed the characterizations and experiments. Z.Z., T.L., W.J. and Y.W. analysed the data. L.Z. and D.Y. designed the devices. H.X., Z.Z., T.L., Y.W. and Z.S. drafted the article and revised it critically. All authors reviewed the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Marcel Risch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
a, A schematic diagram of the lab-scale SES. b, Photos of the lab-scale SES and operation process. c, Ion chromatography tests show that the gas path can prevent seawater penetration, so the ion content in SDE is still nearly four orders of magnitude lower than that in seawater after long-term electrolysis. d, The energy consumption analysis. From the whole period, assuming that the water source is seawater, it is necessary to desalination before use in industrial alkaline electrolysis, which needs to consume at least 9–14.4 kJ \({\rm{k}}{{\rm{g}}}_{{\rm{water}}}^{-1}\), while the phase transition of SES is a spontaneous process, which saves the energy of desalination. During electrolysis, the energy input of our strategy is equivalent to industrial alkaline water electrolysis when the system conditions are the same, which has been confirmed above. e, Electrolysis durability test of conventional direct seawater (Shenzhen Bay seawater) splitting with commercial electrocatalysts. The inset shows photos of clear seawater before electrolysis, precipitation in seawater during electrolysis, and catalyst electrode dissolving and shedding in seawater after electrolysis.
a, Photograph and SEM images of the PTFE membrane. b, Fourier transform infrared spectroscopy (FTIR) result shows different chemical vibration bonds of PTFE. The two bands located at 1147 and 1202 cm−1 are assigned to the -CF2 stretching vibrations of PTFE, and the 638 cm−1 peak is the -CF2 wagging vibrations of PTFE. Due to the large electronegativity and small radius of F atoms, the PTFE membrane has a lower surface energy, thus resulting in an excellent hydrophobic characteristic. The inset demonstrates the superhydrophobic property of the PTFE membrane, and the average droplet contact angle in air was measured as 156.3°. Each mean value was calculated from five measurements. c, The breakthrough pressure and corresponding theoretical hydrostatic depth of the PTFE membrane with different pore sizes. The curve of water migration mass over time at different membrane areas (d), gas path lengths (e) and pore sizes (f). In this process, the electrolysis reaction was not involved. Each mean value was calculated from three measurements.
a, The average migration rate curve of water showing a fast migration rate induced by KOH electrolyte (SDE) under a vapour pressure difference. b, Photograms of the phase transition migration of seawater. c, The relationship curve of the water migration rate and SDE concentration. The inset shows the amount of water migration in simulated seawater (under conditions of 1 μm pore size and 9.6 cm2 gas path area, KOH solid as initial SDE). d, LSV scans of commercial catalysts (MoNi/NF anode paired with a PtNi mesh cathode) taken in various concentrations of KOH solution (SDE) at room temperature.
a—d, Water migration rate from seawater to 30-wt% KOH electrolyte (SDE) in various seasons (the average temperature is considered to be 20 °C-spring, 30 °C-summer, 10 °C-autumn and 0 °C-winter). The inset demonstrates that at different seasonal temperatures the water vapour pressure of the SDE generally increases with water migration until it is equal to that of the seawater side. e, The curve shows the variation in water vapour pressure and water vapour pressure difference with depths.
a, The scaled-up SES consists of an electrolytic module composed by 11 cells in parallel. The structure of each cell from left to right: positioning frame, anode plate, MoNi/NF anode catalyst layer, diaphragm, and cathode. The PTFE membrane was lined on the five inner walls of the electrolyser box (except the top) to create a gas path in seawater and hold KOH solution (SDE) at the same time. b, LSV curves of the scaled-up SES compared with the lab-scale SES by measuring the voltage at 0, 10, 50, 100, 150, 200 and 250 mA cm−2 current densities.
SEM images of the PTFE membrane before (a) and after (b) 15 days of electrolysis in SES. SEM images for the MoNi/NF anode catalyst before (c) and after (d) 200 h electrolysis in a scaled-up SES.
a, Schematic of hydrogen production using a hygroscopic PEM based on a phase transition migration mechanism. b, Electrolyte durability test for PAMPS at a constant current of 30 mA cm−2. The inset is a diagram of the PAMPS hygroscopic hydrogel SDE. c, Schematic of hydrogen production using a hygroscopic AEM based on a phase transition migration mechanism. d, Electrolyte durability test for PVA/KOH at a constant current of 250 mA cm−2. The inset is the diagram of the PVA/KOH hygroscopic hydrogel SDE.
a, OER polarization of Mo-Ni3S2/NF and MoNi/NF electrocatalysts in 30-wt% KOH (SDE). b, LSV scans of PtNi//Mo-Ni3S2/NF and PtNi//MoNi/NF in 30-wt% KOH solution (SDE) (in H-type electrolytic cell). c, Seawater electrolysis durability test based on the Mo-Ni3S2/NF anode and PtNi mesh cathode at a constant current density of 250 mA cm−2 in SES.
a, Water migration behaviour under different concentrations of H2SO4 solution (50 wt% KOH solution as the initial SDE). Each mean value was calculated from three measurements. b, Electrolysis durability in 0.5 M H2SO4 solution. c, The water migration behaviour under different concentration of NaOH solution (50 wt% KOH solution as the initial SDE). Each mean value was calculated from three measurements. d, Electrolysis durability in 0.5 M NaOH solution. e, The water migration behaviour under different concentrations of NaCl solution (50 wt% KOH solution as the initial SDE). Each mean value was calculated from three measurements. f, Electrolysis durability in saturated NaCl solution.
a, Schematic illustration of continuously enriching lithium from the feed solution through water migration and hydrogen generation. b, Photos of LiCl solution without precipitation when adding K2CO3 solution before concentration, LiCl solution with precipitation when adding K2CO3 solution after concentration, and the final Li2CO3 production. c, Electrolytic durability test for hydrogen production while lithium enrichment at a constant current of 400 mA cm−2.
Supplementary information
This file contains Supplementary Figs. 1–7, Tables 1–3 and reference.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and Permissions
About this article
Cite this article
Xie, H., Zhao, Z., Liu, T. et al. A membrane-based seawater electrolyser for hydrogen generation. Nature (2022). /10.1038/s Download citation
* Received: 06 January * Accepted: 21 September * Published: 30 November * DOI: /10.1038/s Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkProvided by the Springer Nature SharedIt content-sharing initiative
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.